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 Abstract: Statistical potentials that embody torsion angle probability densities in 

databases of high-quality X-ray protein structures supplement the incomplete structural 

information of experimental nuclear magnetic resonance (NMR) datasets. By biasing the 

conformational search during the course of structure calculation towards highly populated 

regions in the database, the resulting protein structures display better validation criteria 

and accuracy. Here, a new statistical torsion angle potential is developed using adaptive 

kernel density estimation to extract probability densities from a large database of more 

than 106 quality-filtered amino acid residues. Incorporated into the Xplor-NIH software 

package, the new implementation clearly outperforms an older potential, widely used in 

NMR structure elucidation, in that it exhibits simultaneously smoother and sharper 

energy surfaces, and results in protein structures with improved conformation, nonbonded 

atomic interactions, and accuracy. 

 

Keywords: knowledge-based torsion angle potential, adaptive kernel density estimation, 

NMR protein structure calculation, protein structure validation. 

 

Statement for the broader audience: Torsion angle probability densities extracted from 

a large database of amino acid crystallographic conformations were converted into a 

potential energy term to bias sampling during protein structure calculation towards highly 

populated regions in the database. Kernel density estimation was used to produce 

simultaneously smooth and sharp densities, which, when implemented as a potential in 

NMR structure computation, improved conformation, atomic packing, and accuracy, 

relative to a popular older potential. 
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Abbreviations: IIBMtl, cytoplasmic B domain of the mannitol transporter IImannitol; BAF, 

barrier-to-autointegration factor; CNS, crystallography and NMR system; DHFR, apo 

dihydrofolate reductase; DinI, DNA damage inducible protein; EIN, N-terminal domain 

of enzyme I; GB1, B1 domain of protein G; KDE, kernel density estimation; KH3, C-

terminal KH domain of heterogeneous nuclear ribonucleoprotein K; LM5-1, LM5-1 

FYVE domain; NMR, nuclear magnetic resonance; NOE, nuclear Overhauser effect; 

PDB, protein data bank; RDC, residual dipolar coupling; RMS, root-mean-square; SrtA, 

sortease A in covalent complex with an LPXTG analog; Ubi, ubiquitin. 
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Introduction 

 

Over the years, the accumulation of high-resolution X-ray structures in the Protein 

Data Bank (PDB)1 has refined our knowledge of protein conformational preferences. 

Boundaries for the most favorable regions of the Ramachandran (φ, ψ) plot have shrunk,2 

and side chain rotamer distributions have become sharper and narrower than ever before.3 

Not only is this wealth of structural information exploited as validation criteria for newly 

generated models,4 but also as a search bias during structure calculation. The latter 

approach aims at reproducing physically realistic conformational features of the structure 

database to alleviate the uncertainty associated with incomplete experimental 

information, such as that in low-resolution X-ray datasets. For instance, rotamer libraries 

can be used to fit side chain conformations to electron density,5,6 and statistical potentials 

derived from database torsion angle distributions can supplement experimental restraints 

derived from NMR data. Driven by the relative sparseness of NMR data, the latter 

application was introduced more than 15 years ago,7 and is at the center of the present 

study. 

Statistical torsion angle potentials can be succinctly described as follows.8 The 

probability density of torsion angles of interest is estimated from a database, and 

subsequently converted into potential energy by inversion of the Boltzmann equation. 

Thus (assuming a unit partition function as it cannot be directly obtained from the 

database),  

Ea(x) = −β ln p(x|a),         (1) 
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where β is a constant, x, one or more torsion angles, and p(x|a), the probability density of 

x given another variable a. Ea(x) is a statistical potential that acts on x (given a). (It is 

also known as potential of mean force, and sometimes associated with other adjectives, 

such as empirical, database, and knowledge-based.) For example, if x consists of φ and ψ, 

and a is the amino acid residue type “alanine”, then, during the calculation of a novel 

protein structure, EAla(φ, ψ) biases the backbone torsion angles of alanines towards the 

densest regions of the Ramachandran distribution of alanine in the database. A collection 

of such potentials (e.g., one per residue type) is needed to handle every possible protein 

sequence. 

Although statistical torsion angle potentials may be implemented under different 

conformational sampling techniques, NMR structure elucidation is typically achieved by 

molecular dynamics-based simulated annealing and gradient minimization, both of which 

call for smoothness and differentiability of the potentials. In this regard, the latest and 

most advanced implementation9 relies on kernel density estimation (KDE) to obtain 

smooth, continuous probability densities involving all torsion angles within each residue 

type, the corresponding energy terms efficiently represented during structure calculations 

by cubic spline interpolation. However, since the main focus of that study was in 

structure prediction, NMR-relevant tests were reported as superficial, limited to the 

experimentally unrestrained minimization of previously solved NMR structures, omitting 

analysis of the accuracy of the resulting models, and their compatibility with the NMR 

data.  

Possibly, the most thoroughly tested and most widely used statistical torsion angle 

potential in NMR is the so-called DELPHIC potential, developed by Kuszewski et al.,7 
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which has evolved over time.10-12 Included in the Xplor-NIH software package,13,14 the 

latest version of this potential relies on a histogram-based approach for probability 

density estimation, the resulting energy (hyper)surfaces fit via an iterative protocol11 

whereby a quartic function is fit to the global minimum and subtracted from the surface. 

This procedure is repeated until a desired tolerance is met, and the energy surface is then 

represented by the sum of the quartic functions. Under comprehensive analysis,15 the 

DELPHIC potential has been shown to significantly improve both structural validation 

criteria and accuracy, the former indicated by software tools such as WHAT IF,16 the 

latter, by better agreement of the models with residual dipolar couplings (RDCs) 

purposely excluded from structure calculations (i.e., RDC cross-validation).  

Despite the above-described encouraging results, visual inspection of the DELPHIC 

potential energy surfaces reveals roughness and other features (or lack thereof) that seem 

unsupported by torsion angle populations in modern databases (see below). Here, such 

deficiencies are addressed by a completely reformulated statistical torsion angle potential. 

A database of more than 106 quality-filtered residues is used to generate probability 

densities via adaptive kernel density estimation. This results in density estimates that are 

not only continuous and smooth overall, but also free of defects in regions of low density, 

where the noisy contribution of isolated points is automatically smoothed out. Finally, 

energy terms are efficiently represented during the course of structure calculation by 

cubic interpolation, from which forces are readily obtained. This new potential is 

incorporated into Xplor-NIH,13,14 and tested on the structure calculation of ten proteins of 

various folds and sizes, using publicly available NMR restraints. The latter include 

RDCs, omitted from the calculations for cross-validation. The quality of backbone and 
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side chain conformations, as well as that of nonbonded atomic interactions, was assessed 

using MolProbity2,17,18 and WHAT IF.16 

 

Results 

 

The torsion angle database 

The database on which the present study relies consists of 1,005,827 residues, 

extracted from protein crystal structures solved at a resolution of 1.8 Å or better, all 

atoms with B factors < 35 Å2 and no serious atomic clashes reported by MolProbity. This 

database is a subset of the Top8000 database of almost 8,000 non-homologous protein 

chains (see Methods for details), kindly provided by Jane S. Richardson as a successor of 

the popular Top500 database.2 

 

Residue type definitions and statistical approximations 

The initial goal was to estimate the probability density function of all torsion angles 

within each residue type, starting from torsion angle instances in the database. Density 

estimates within a predefined grid were subsequently needed to obtain the corresponding 

energy values (via Equation 1), used in a cubic interpolation routine during structure 

computation (see Methods for details), where the statistical potential term (or terms; see 

below) was applied to all torsion angle degrees of freedom of residues with the 

corresponding type. Each residue was assigned only one type, following the order of 

precedence   

Gly, cis-Pro, trans-Pro > prePro > Ala, Thr, Val, etc.,    (2) 
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where cis/trans refers to the peptide bond conformation, prePro denotes a residue 

immediately preceding a proline in the primary structure, and the lowest-precedence 

types consist of all amino acid names minus Gly and Pro. For example, to estimate the 

(φ, ψ) probability density of Gly, p(φ, ψ|Gly), all glycines in the database were used, 

regardless of whether they preceded a proline, whereas estimation of p(φ, ψ|Ala) omitted 

pre-proline alanines. This residue classification is based on well-known distinctive 

torsion angle distributions (e.g., the relatively large, steric clash-free areas accessible to 

glycine, afforded by the lack of Cβ), as well as the large size of the database. For 

example, whereas chemical similarity between tyrosine and phenylalanine has previously 

prompted their joint treatment to alleviate database scarcity (e.g., Ref. 10), here they 

yielded separate residue types, regardless of possible common features. Henceforth, 

Equation 2 will be implied whenever a name in it is used (e.g., “Ala” stands for “non-pre-

proline alanine”). 

Use of Equation 1 yields an energy term of the same dimensionality as the probability 

density function. Since all torsion angles within a residue type are involved, the highest 

possible dimensionality is six (e.g., Arg’s φ, ψ  χ1, …, χ4). However, the number of 

coefficients needed to represent the interpolated energy term during structure calculations 

becomes excessively computationally expensive beyond three dimensions.9 Therefore, 

the problem is one of breaking probability densities of dimensionality > 3 into 

components of dimensionality ≤ 3, a statistical task that can be achieved by assuming 

conditional independence.19 For example, in the case of Leu, χ2 was assumed 

conditionally independent of φ and ψ given χ1, which yields 

p(φ, ψ, χ1, χ2|Leu) = p(φ, ψ, χ1|Leu) p(χ1, χ2|Leu) / p(χ1|Leu).   (3) 
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It should be noted that Equation 3 does not imply that χ2 is independent of the backbone 

torsion angles, but that its dependence is indirect, via χ1. Table I provides the probability 

density expressions for all residue types, including the statistical assumptions used to 

derive them. Such approximations rely on the number of atoms shared by torsion angles 

along the covalent framework of the residue: adjacent torsion angles (e.g., φ and χ1) share 

more atoms than nonadjacent ones (e.g., φ and χ2), and are, consequently, more likely to 

directly influence one another. Approximations similar to those in Table I have been 

previously used in another statistical torsion angle potential,9 although the latter made 

more assumptions in that no three-dimensional probability densities were used for side 

chain torsion angles. 

Two residue types in Table I deserve particular attention. First, the side chain torsion 

angles of Pro are highly correlated to one another due to covalent restrictions imposed by 

the ring. As a result, a single torsion angle, χ2, can be used to determine the side chain 

conformation,20 and the entire conformational space captured by p(φ, ψ, χ2|Pro). Second, 

prePro is special in that it represents a diverse group (all non-glycine, non-proline 

residues immediately preceding a proline; Equation 2), with several residue subtypes. 

Due to insufficient pre-proline alanines (preProAla subtype) in the database, its (φ, ψ) 

density is represented by that of all prePro residues, p(φ, ψ|prePro). The (φ, ψ, χ1) 

distribution of the remaining prePro subtypes is captured by that of all prePro residues 

with at least χ1, p(φ, ψ, χ1|prePro). The distribution of torsion angles beyond χ1 is 

assumed to be that of the corresponding residue, regardless of whether it precedes a 

proline. For example, for pre-proline leucines 

p(φ, ψ, χ1, χ2|preProLeu) = p(φ, ψ, χ1|prePro) p(χ2),     (4) 
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where p(χ2) is obtained from all leucines in the database. Although, Equation 4 implies 

the not-necessarily-true assertion that χ2 is uncorrelated with the remaining torsion 

angles, such a correlation cannot be accurately obtained from the database due to the 

scarcity of pre-proline leucines, hence the current approximation. Similar considerations 

apply to the other prePro residue subtypes with torsion angles beyond χ1 (see Table I). A 

more detailed version of Table I is provided as supplementary material (Supporting 

Information Table SI). It is noteworthy that while certain long-range correlations might 

be neglected by the above approximations, those based on atomic clashes are accounted 

for during structure calculations by repulsive interactions (see Methods for more details). 

 

Adaptive kernel density estimation produces smooth, yet sharp potential surfaces 

The general methodology chosen to extract the probability densities listed in Table I 

from the torsion angle database is kernel density estimation (KDE).21 It consists of 

centering “bumps” or kernel functions on top of each database point; the density at any 

arbitrary position in torsion angle space is then estimated by summing the contribution of 

all kernels. In the present case, the kernels take the form of d-dimensional (d = 1, 2, or 3), 

symmetrical Gaussians, so that their overall smoothness is inherited by the density 

estimates. In particular, the adaptive version of KDE was used,21 where the width of each 

Gaussian adapts to the local density in that narrow ones are placed in regions of high 

density, and wide ones in regions of low density. This has the effect of reproducing 

features at high local density, while smearing sparsely populated areas of torsion angle 

space (i.e., the “tails” of the distribution). The latter would appear bumpy if fixed-width 

kernels were used, and yield false high-energy local minima (via Equation 1) that could 
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hamper structure calculations. This shortcoming of non-adaptive KDE may be mitigated 

by removal of isolated database points, followed by padding low-density regions with 

artificial points.9 Here, the use of adaptive KDE rendered such modifications of the 

database unnecessary. Other examples of adaptive KDE in torsion angle space are 

provided elsewhere.2,22 

The energy terms that comprise the new statistical torsion angle potential, henceforth 

referred to as “torsionDBPot”, follow directly from Table I and Equation 1. For example, 

Boltzmann inversion of Equation 3 yields  

ELeu(φ, ψ, χ1, χ2) = ELeu(φ, ψ, χ1) + ELeu(χ1, χ2) − ELeu(χ1).    (5) 

The subtraction of ELeu(χ1) intuitively accounts for the overweighting of χ1 in the 

remainder of Equation 5 (note 1 appears in both ELeu(φ, ψ, χ1) and ELeu(χ1, χ2)). This is 

not an ad-hoc property of the potential, but one that arises naturally from the statistical 

treatment described in the previous section.  

Figure 1 shows typical energy surfaces obtained from both the current version of the 

DELPHIC potential12 in Xplor-NIH (Figures 1A and 1C) and torsionDBPot (Figures 1B 

and 1D), introduced in Xplor-NIH as part of the present work. Comparison of contour 

plots of the His (χ1, χ2) energy term reveals the absence of features in the DELPHIC 

potential (Figure 1A), notably, a shallow minimum at (62°, 83°) (corresponding to the 

sparsely populated p80° rotamer3), which is apparent in torsionDBPot (Figure 1B). 

Moreover, the DELPHIC potential suffers from noise and unrealistic shapes of energy 

surfaces, a problem exacerbated at high dimensions, as exemplified by the (φ, ψ, χ1) 

energy term of Val (Figure 1C), which contrasts with the both smoother and sharper 

surfaces of torsionDBPot (Figures 1B and 1D). Visual inspection of several other 
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surfaces indicates a prevalence of noise and multiple instances of missing features for the 

DELPHIC potential. 

  

Effect of torsionDBPot on NMR structure calculations 

The new statistical torsion angle potential, torsionDBPot, was tested on ten protein 

structures of diverse sizes (54 to 259 residues in length) and topologies (α, β, and αβ 

folds), listed in Table II. Structure calculations were performed with Xplor-NIH, 

enforcing publicly available NMR distance and torsion angle restraint sets. The latter 

reflect heterogeneity in their derivation from the experimental data. For example, 

whereas the backbone torsion angle restraints for the protein KH323 were obtained from 

scalar couplings, those for DinI24 were derived from chemical shifts. The interpretation of 

nuclear Overhauser effects (NOEs) in terms of interproton distances also varies from one 

research group to another (six of which are represented here), a fact notably exemplified 

by SrtA,25 which relied heavily on automation for NOE analysis, as opposed to, for 

example, IIBMtl,26 which followed a more conventional manual iterative approach. 

Differences in NOE data are also quantitative as the average number of long-range NOEs 

(i.e., between residues separated by more than five in the amino acid sequence) ranges 

from 1.8 to 10.6 per residue in the ten-protein set. Thus, the systems tested aim at 

representing a range of situations that may be encountered during the determination of a 

novel protein structure by NMR. 

For each protein, three types of structure calculations were carried out, differing in 

the statistical torsion angle potential used: (i) none, (ii) the DELPHIC potential, or (iii) 

torsionDBPot. The generated structures were validated with MolProbity (Figure 2) and 
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WHAT IF (Figure 3), which report that calculations using either the DELPHIC or the 

torsionDBPot potential outperform in every criterion those that exclude such potentials. 

Furthermore, torsionDBPot improves the quality of the backbone conformation relative 

to the DELPHIC potential. Indeed, MolProbity indicates that, with the sole exception of 

EIN, the percent of Ramachandran outliers drops to its lowest values with torsionDBPot 

(Figure 2A), and the favored regions of the Ramachandran plot become more populated 

in every case, except for GB1, where a similar outcome is achieved with the DELPHIC 

potential (Figure 2B). These results agree with WHAT IF’s Ramachandran plot 

appearance score, which improves throughout (Figure 3A) upon use of torsionDBPot. 

With regards to side chain conformation, both potentials perform similarly according to 

MolProbity: the percent of poor rotamers is slightly smaller with torsionDBPot for seven 

proteins, the remaining three yielding slightly better statistics with the DELPHIC 

potential (Figure 2C). On the other hand, WHAT IF favors torsionDBPot, which results 

in better χ1/χ2 rotamer normality scores for all proteins (Figure 3B). 

Measures of quality of nonbonded atomic interactions, or atomic packing, are more 

independent validation criteria than those discussed above, in that they usually do not rely 

on the variables directly affected by the statistical torsion angle potentials, i.e., the torsion 

angles. Further, packing encompasses long-range features outside the scope of both the 

torsionDBPot and DELPHIC potentials, which only act at the local residue level. 

MolProbity’s “clashscore”,27 the number of serious atomic overlaps per thousand atoms 

(see Methods for details), and WHAT IF’s packing quality score,28 which considers 

atomic distributions around different molecular fragments, are two such measures of 

packing. Relative to the DELPHIC potential, all structures generated with torsionDBPot 
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display systematic improvements in the MolProbity clashscore, except for the slightly 

worse clashscore of IIBMtl, well within error bars (Figure 2D). This trend is also reflected 

by WHAT IF’s packing quality score (Figure 3C).  

The introduction of an additional energy term usually causes the agreement between 

calculated structures and terms in the original target function to deteriorate. It is therefore 

important to confirm that the improvements in conformation and atomic interactions 

afforded by torsionDBPot do not come at significant cost to the remaining terms, 

particularly those associated with the NMR data. Indeed, torsionDBPot is more 

compatible than the DELPHIC potential with the experimentally determined distances, as 

suggested by slightly lower root mean square (RMS) deviations from the upper and lower 

bounds of the distance restraints (Figure 4A). With regards to torsion angle restraints, 

RMS statistics suggest that some proteins exhibit better agreement when generated with 

the DELPHIC potential, others with torsionDBPot, but in every case the agreement is 

comparable to that of structures generated without either potential (except for ubiquitin 

whose publicly released restraints have unrealistically narrow bounds, hence the large 

RMS deviations) (Figure 4B). 

The compatibility with experimental data excluded from structure calculations 

represents an independent test of structural accuracy. RDCs depend on the orientation of 

interatomic vectors relative to an external alignment tensor, and are commonly used for 

cross-validation.29 Experimentally observed RDCs and those computed from the protein 

models were compared via an R-factor,30 which ranges from 0% (perfect correlation) to 

100% (no correlation). Figure 4C shows that inclusion of the DELPHIC potential in 

structure calculations significantly improves the fit to RDCs, as previously reported 
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elsewhere.15 torsionDBPot improves the fit even further in all cases, with the exception of 

IIBMtl, where a slightly worse fit is observed. 

 

Discussion 

 

The previously developed statistical torsion angle potential7,10-12 in Xplor-NIH13,14 (or 

its precursors, X-PLOR31 and CNS32) has become an important tool in NMR protein 

structure determination, inspiring similar implementations in other software 

packages.9,33,34 Although originally applied to solution NMR, the statistical torsion angle 

potential in Xplor-NIH (named DELPHIC) has additionally made significant 

contributions with other types of experimental data, such as combination of solution and 

solid state NMR,35-37 combination of solution NMR and small- and wide-angle X-ray 

scattering,38,39 combination of solid state NMR and X-ray diffraction,40 and purely solid 

state NMR data (e.g., Refs. 41-43). With this in mind, a “First, do no harm” approach 

was followed in the development of torsionDBPot, a new statistical torsion angle 

potential in Xplor-NIH. (Note that the DELPHIC potential remains available for 

backwards compatibility.) Indeed, while accomplishing similar or better fit to 

experimental restraints relative to the DELPHIC potential, torsionDBPot improves the 

quality of protein conformation and nonbonded atomic interactions. This is summarized 

by the overall MolProbity score18 (the lower the better), which improves in every case 

tested (Figure 2E). Moreover, such benefits are concomitant with enhanced structural 

accuracy, as suggested by better agreement with cross-validated RDCs. Albeit relatively 
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moderate, the above-reported improvements are consistent across the entire protein test 

set. 

Despite their usefulness in protein structure prediction and experiment-based 

determination, a general concern with statistical potentials of any kind is that their 

inherent average nature may bias structures away from features that are real although 

poorly represented in the database. Use of experimental data, however, as in the present 

case, ameliorates this bias because the data are allowed to trump the statistical potential 

whenever possible. Thus, a rarely observed conformation firmly supported by NMR 

restraints should prevail over torsionDBPot in structure calculations (otherwise, restraint 

violations would arise highlighting the unusual region). In this light, flexibly disordered 

regions appear problematic as they are both poorly represented in the structured, low-B 

factor database, and usually sparsely restrained by NMR data Future work may address 

the need for alternate descriptions of nonregular regions. For the ten proteins studied here 

the current protocol is clearly a step forward in generating high-quality NMR structures. 

 

Methods 

 

The torsion angle database 

The starting point for the compilation of the torsion angle database used in this study 

is the Top8000 database (kindly provided by Jane S. Richardson, Duke University), of 

almost 8,000 chains with X-ray structure resolution better than 2.0 Å, less than 70% 

sequence identity, and other satisfied filters, notably: chain MolProbity score < 2.0, ≤ 5% 

of residues with bond lengths and angles outside 4 standard deviations from standard 

Page 16 of 46

John Wiley & Sons

Protein Science



 17

geometry, ≤ 5% of residues with Cβ deviations > 0.25 Å, and best average of resolution 

and MolProbity score among the 70% homology cluster the chain represents. In addition, 

similar to previous versions of this database,2,3 the Top8000 contains flipped planar side 

chain terminal groups of asparagines, glutamines, and histidines, when justified by 

analysis of atomic clashes and H-bonding.3 Further details are provided at the Richardson 

Lab’s website (http://kinemage.biochem.duke.edu/databases/top8000.php). The Top8000 

database was obtained as a table, each row containing information on a single residue, 

such as its torsion angles, resolution, atomic clashes (if any), etc.  

As discussed in the Results section, the Top8000 database was subjected to more 

stringent filters to generate the custom database used by our new statistical torsion angle 

potential, torsionDBPot. Specifically, only chains with X-ray resolution of 1.8 Å or better 

were considered, residues from which were included in the custom database only if all 

their atoms had B factors < 35 Å2 and no serious clashes reported by MolProbity.2,17,18 

Moreover, leucines with (χ, χ2) pairs within regions that represent misfit rotamers3,10 

were avoided; a total of 553 such misfits were encountered and removed after resolution, 

B factor, and clash filtering. The resulting torsion angle database contains 1,005,827 

residues. 

A new Python module, torsionDBTools, has been added to Xplor-NIH to facilitate the 

extraction of torsion angles from Cartesian coordinates (i.e., PDB files). Although 

thoroughly tested, this module was not used here, as the Top8000 database already 

provided torsion angle, along with other useful information (see above). However, the 

module should prove useful in the derivation of new statistical torsion angle potentials 

from arbitrary subsets of the PDB (e.g., coil databases). 
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Torsion angle probability densities via adaptive kernel density estimation  

The goal is to accurately estimate the probability density function of torsion angles of 

interest from the database, with the additional requirement that the estimate be smooth. 

The torsion angles under consideration can be represented by a column vector x, which 

defines a d-dimensional space where n database points X1, …, Xn are found (e.g., if 

x
T = (φ, ψ), d = 2, where T denotes vector transpose). A first approximation towards 

extracting the probability density from the database is to perform kernel density 

estimation (KDE), by summing over “bumps” or kernels centered at the observed 

database points.21 KDE with a symmetrical Gaussian kernel function and window width h 

is defined by 

    
˜ p (x) =

1

n
N(µµµµ = Xi,

i=1

n

∑     ΣΣΣΣ = h2
I) ,       (6) 

where the N-notation is used for the d-dimensional (or d-variate) Gaussian, with mean 

vector µ and covariance matrix Σ  (I is the identity matrix). Explicitly, 

    
N(µµµµ = Xi,ΣΣΣΣ = h2

I) =
1

(2πh2)d / 2
exp −

1

2h2
x − Xi( )T

x − Xi( )
 

 
 

 

 
 .   (7) 

In one dimension, for example, the left-hand side of Equation 7 simply becomes 

  N(µ = X i,σ
2 = h 2), where the boldface vector/matrix notation is no longer necessary, and 

the variance, σ2, replaces the covariance matrix. It is noteworthy that, for the sake of 

simplicity, all probability density functions in this section (including Equations 6 and 7 

above) tacitly imply the residue type conditional, explicit elsewhere in the text (cf. 

Equation 1). 
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Gaussians are nonnegative and integrate to one, leading   ̃  p (x)  to also be nonnegative 

and integrate to one, as any probability density function must. Also, since Gaussians are 

continuous and smooth, so is   ̃  p (x) . The degree of smoothing is additionally controlled by 

the choice of window width h (i.e., σ, the standard deviation in the one-dimensional 

case). Throughout our work, the periodicity of angular values is dealt with by augmenting 

the database with shifted copies of the original.21 Following the one-dimensional 

example, if the torsion angle under study is defined in the interval [−180°, 180°), adding 

copies of the database at intervals [−540°, −180°) and [180°, 540°) results in a new 

database {X1 − 360°, …, Xn − 360°, X1, …, Xn, X1 + 360°, …, Xn + 360°}. Performing 

KDE on this augmented database with Equation 6 (where n is still the original number of 

points) accounts for the boundary condition. 

Despite its obvious advantages over simpler density estimation methods such as the 

histogram, KDE has the tendency to produce noise in regions of low density, arising from 

individual, isolated bumps, a problem exacerbated in high dimensions. Here, the solution 

chosen was the use of kernels with variable window width—as opposed to the fixed-

width kernels of Equation 6—so that narrow kernels are placed in regions of high 

density, and wide ones in regions of low density. This method is called adaptive KDE,21 

as the window width adapts to the local density, which is preliminary estimated via 

standard KDE (Equation 6, in this context usually referred to as the pilot estimate). Using 

again symmetrical Gaussians, adaptive KDE takes the mathematical form 

      
p(x) =

1

n
N(µµµµ = Xi,

i=1

n

∑     ΣΣΣΣ i = (hλi)
2
I) ,      (8) 

where local bandwidth factors λi  are given by 
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λi =
g

˜ p (Xi)

 

 
 

 

 
 

α

.         (9) 

In Equation 9, 
  
g = ˜ p (Xi)

i=1

n

∏ 
 
  

 
 

1/n

, the geometric mean of the   ̃  p (Xi) (a constant), and α is 

set to 0.5 as recommended elsewhere.21 The formulas for the variable-width, symmetrical 

Gaussians in Equation 8 can be readily obtained from Equation 7 by replacing h by hλi . 

Once the λi ’s are determined for a joint probability density estimate (e.g., p(φ, ψ  χ1)), the 

marginal probability density estimate of one (or more) torsion angles (e.g., p(χ1)) can be 

computed in a straightforward manner. When more than one joint probability density 

estimate is available, the marginal probability density of a common torsion angle is 

extracted from each joint distribution, and an average density computed. 

In the present study, adaptive KDE was performed as described above, for one, two, 

and three dimensions, where h was given the values of 4°, 5°, and 6°, respectively—as 

prescribed elsewhere,21 h takes the same value in Equations 6 and 8. All calculations 

were performed using the Python module densityEstimation implemented within Xplor-

NIH13,14 for the present purposes.  

 

Cubic interpolation of energy terms 

The different energy terms that stem from the application of Equation 1 to the 

adaptive KDE-based probability density functions in Table I (see Supporting Information 

Table SI for a more detailed version of Table I) were evaluated on a grid used for cubic 

interpolation with periodic boundary conditions. In one and two dimensions, a uniform 

grid with 10°-spacing was used. Extending this strategy to the construction of a three-

dimensional grid results in an unacceptable increase of computer memory requirements. 
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Consequently, a non-uniform grid was devised with 10°-spacing around each energy 

minimum, and wider spacing elsewhere. Specifically, the axis along one of the three 

dimensions is uniformly marked every 10°, and a tick mark retained only if within a 

distance r of the coordinate of a minimum along that dimension. Subsequently, to avoid 

under-sampling, if two adjacent tick marks are farther apart than 10°, a new one is added 

equidistant from the two. The same procedure is performed with the axes along the 

remaining two dimensions, and the grid constructed with the three sparsely sampled axes. 

r = 23° for all residue types (Equation 2), with the exception of cis/trans-Pro, where 

r = 30°, the denser sampling afforded by the fact that the minima are confined to a small 

region of torsion angle space. 

Within Xplor-NIH, cubic interpolation routines in one and two dimensions44 were 

already present, and were previously exploited by another potential term.41 Three-

dimensional cubic interpolation capabilities, as described elsewhere,45 were added to 

Xplor-NIH (spline3D Python module) for the present purposes, and have already been 

successfully applied to a recent unrelated problem.46 The interpolated energy terms make 

up the new statistical torsion angle potential, torsionDBPot, which is set up with the 

newly added module torsionDBPotTools. In addition, torsionDBPotTools contains the 

auxiliary function find_minima, which characterizes a queried torsionDBPot surface by 

listing the number, location, and depth of all its minima, and is useful for the comparison 

of different surfaces. 

 

Structure calculations 
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Structures were calculated with Xplor-NIH,13,14 using two conventional simulated 

annealing protocols: a first one for folding an initially extended conformation, and a 

second one for the subsequent refinement of a selected folded model. Both protocols, 

based on the internal variable module,47 share the same basic scheme, comprising the 

following stages (respecting their order during calculations): (i) high-temperature torsion 

angle dynamics (3,500 K for folding, 3,000 K for refinement), the smallest of 15 ps or 

15,000 timesteps in length, subject to torsion angle restraints (kta = 10 kcal mol–1 rad–2), 

distance restraints (kdist = 2 kcal mol–1 Å–2), and van der Waals-like repulsions48 

(kvdw = 0.004 kcal mol–1 Å–4; only Cα–Cα interactions active, with a van der Waals radius 

scale factor svdw = 1.2), where k represents the force constant of energy term η; (ii) 

torsion angle dynamics with simulated annealing, where the temperature is reduced from 

the initial value (see above) to 25 K in steps of 12.5 K (the smallest of 0.2 ps/step or 200 

timesteps/step for folding, the smallest of 0.63 ps/step or 630 timesteps/step for 

refinement), kta = 200 kcal mol–1 rad–2, and kdist, kvdw, and svdw are geometrically increased 

from 2 to 30 kcal mol–1 Å–2, 0.004 to 4 kcal mol–1 Å–4, and 0.9 to 0.8, respectively (all 

van der Waals interactions active (see exceptions below) in this stage, a feature 

maintained in subsequent stages, as well as the final values of force constants and svdw); 

(iii) 500 steps of Powell torsion angle minimization; (iv) 500 steps of Powell Cartesian 

minimization. When including either the DELPHIC12 or the torsionDBPot statistical 

torsion angle potential term, its force constant is set to 0.002 kcal mol–1 rad–2 in stage (i), 

from which it geometrically increases to 1 (DELPHIC) or 2 kcal mol–1 rad–2 

(torsionDBPot) in stage (ii), values maintained until the end of the protocol. Although 

many steric interactions are already accounted for by both the DELPHIC and 
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torsionDBPot potentials (e.g., those in eclipsed conformations that result in staggered 

side chain rotamer distributions), the prevention of any atomic overlap is an essential part 

of any force field. Here, a compromise is achieved by allowing repulsions only between 

atoms separated by more than three covalent bonds whenever the DELPHIC or 

torsionDBPot potentials are used; when they are not used, repulsions are allowed only 

between atoms separated by more than two covalent bonds. 

The folding protocol generated 100 structures, from which the one with the lowest 

experimental energy (i.e., energy from distance and torsion angle restraints) was selected 

for refinement. The refinement protocol generated 100 structures, and the top 20 ranked 

by the experimental energy were selected for further analysis. Computer memory 

requirements for torsionDBPot were similar to those of the DELPHIC potential.  

Experimentally determined distance, torsion angle, and RDC restraints (the latter 

excluded from the structure calculations, and used only for purposes of cross-validation; 

see below for details) were obtained from the PDB for the ten proteins listed in Table II. 

 

Structure validation 

The quality of backbone and side chain conformations, as well as that of nonbonded 

interatomic interactions in the calculated protein structures were assessed with 

MolProbity2,17,18 and WHAT IF.16 The increase of a WHAT IF score was considered an 

improvement of the associated quality criterion (a proper “score” behavior). On the other 

hand, MolProbity’s overall score18 and clashscore27 are actually costs whose decrease 

reflect improvement. It is noteworthy that the clashscore (number of serious atomic 

overlaps per thousand atoms) ignores clashes between pairs of heavy atoms within three 

Page 23 of 46

John Wiley & Sons

Protein Science



 24

or fewer covalent bonds, and between pairs of atoms where one or both are hydrogens 

within four of fewer bonds. In other words, the MolProbity clashscore ignores clashes 

between atoms whose relative positions are directly affected by the statistical torsion 

angle potentials during structure calculations, thus making it a more independent measure 

of structure quality as opposed to, for example, the percentage of poor side chain 

rotamers. 

 

Agreement between structures and residual dipolar couplings  

RDCs were fit to calculated structures by singular value decomposition49 with Xplor-

NIH, which additionally reports the R-factor measure of fit,30 

R =100
5 Dobs

AB −Dcalc
AB( )2

2 Da
AB( )2

4 + 3Rh2( )
,       (10) 

where Dobs
AB  is the experimentally observed and Dcalc

AB

 
the structure-calculated RDC for 

nuclei pair type A–B (e.g., 1HN–15N) in a given molecular alignment medium, Da
AB

 and 

Rh are the axial component and the rhombicity of the alignment tensor, respectively, and 

angular brackets denote averaging over the entire A–B RDC dataset. A single unweighted 

R-factor average over all nuclei pair types and media was used to assess the overall fit. 

 

Availability 

The new statistical torsion angle potential, torsionDBPot, is part of the Xplor-NIH 

software suite (version 2.31), downloadable from the web (http://nmr.cit.nih.gov/xplor-

nih/). 
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Table I. Probability Density Expressions Extracted from the Torsion Angle Database 

 

a For simplicity, probability density functions omit conditionals whenever possible. For 

example, for residue types Gly and Ala, p(φ, ψ) implies p(φ, ψ|Gly) and p(φ, ψ|Ala), 

respectively. In the case of prePro, the explicit use of a conditional is informative. For 

example, the probability density function of pre-proline arginines is represented by 

p(φ, ψ  χ1|prePro) p(χ2, χ3, χ4), where p(φ, ψ  χ1|prePro) corresponds to all non-glycine, 

Residue Type Probability Density Function a Statistical Approximation b 

Gly, Ala p(φ,ψ)  None 

Thr, Val, Ser, Cys p(φ,ψ,χ1)  None 

cis-Pro, trans-Pro 
p(φ,ψ,χ2) 

χ2  determines other ring 

torsion angles 

Asp, Asn, Ile, Leu, 

His, Trp, Tyr, Phe 

p(φ,ψ,χ1)p(χ1,χ2)

p(χ1)
   χ2⊥φ,ψ given χ1  

Met, Glu, Gln p(φ,ψ,χ1)p(χ1,χ2,χ3)

p(χ1)
 

  

χ2⊥φ,ψ given χ1

χ3⊥φ,ψ given χ1,χ2 

 
 
 

 

Lys, Arg 
p(φ,ψ,χ1)p(χ1,χ2,χ3)p(χ2,χ3,χ4 )

p(χ1)p(χ2,χ3)
 

  

χ2⊥φ,ψ given χ1

χ3⊥φ,ψ given χ1, χ2

χ4⊥φ,ψ given χ2 , χ3 

 

 
 

 
 

 

prePro   p(φ,ψ | prePro)  

  p(φ,ψ,χ1 | prePro)  

  p(φ,ψ,χ1 | prePro)p(χ2) 

  p(φ,ψ,χ1 | prePro)p(χ2,χ3)  

  p(φ,ψ,χ1 | prePro)p(χ2,χ3,χ4)  

None 

None 

χ2⊥φ,ψ,χ1   

χ2,χ3⊥φ,ψ,χ1 

χ2,χ3,χ4⊥φ,ψ,χ1 

Page 34 of 46

John Wiley & Sons

Protein Science



 35

non-proline pre-proline residues (with at least one side chain torsion angle), and 

p(χ2, χ3, χ4) to all arginines, regardless whether they precede a proline (see text for 

another example).  

b The statistical approximations used to arrive at the different probability density 

expressions are indicated, where the orthogonality sign ( ⊥) means “independent of”. 
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Table II. Proteins Used in Test Structure Calculations 

Protein  

(Name and Abbreviation) 

Residues Fold NMR Data 

(PDB ID) 

References 

B1 domain of protein G (GB1) 54 αβ 3GB1 52 

Ubiquitin (Ubi) 76  αβ 1D3Z 53 

DNA damage inducible protein 

1 (DinI) 

81 αβ 1GHH 24 

LM5-1 FYVE domain (LM5-1) 84 αβ 1Z2Q 54 

C-terminal KH domain of 

heterogeneous nuclear 

ribonucleoprotein K (KH3) 

89 αβ 1KHM 23 

Barrier-to-autointegration factor 

(BAF, chain A only)  

89 α 2EZX 55 

Cytoplasmic B domain of the 

mannitol transporter IImannitol 

(IIBMtl)  

97 αβ 1VKR 26 

Sortease A in covalent complex 

with an LPXTG analog (SrtA)  

148 β 2KID 25 

Apo dihydrofolate reductase 

(DHFR)  

162 αβ 2L28 56 

N-terminal domain of enzyme I 

(EIN)  

259 αβ 1EZA (distance, 

torsion angle) 

3EZA (RDC) 

57,58 
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Figure Legends 

 

Figure 1. Representative energy surfaces of the DELPHIC and torsionDBPot statistical 

torsion angle potentials in Xplor-NIH. (A and B) Contour plots of the His (χ1, χ2) energy 

term in the DELPHIC potential and torsionDBPot, respectively. (C and D) Single 

isoenergetic surfaces of the Val (φ, ψ, χ1) energy term in the DELPHIC potential and 

torsionDBPot, respectively. Panels A and B were generated with Matplotlib,50 C and D 

with Mayavi.51 All units are in degrees. 

 

Figure 2. MolProbity validation. Each barplot displays a Molprobity validation statistic 

for structure ensembles of different proteins, with bars representing the mean ± standard 

deviation computed from 20 structures. Structure calculations without any statistical 

torsion angle potential (black), with the DELPHIC potential12 (gray), and with the new 

torsionDBPot potential (white) are included. Abbreviated protein names are used; for full 

names see Table II. The clashscore27 (panel D) and the MolProbity score18 (panel E) are 

costs: the lower the better. Barplots in this and all other figures were generated with 

Matplotlib.50
 

 

Figure 3. WHAT IF validation. Each barplot displays a WHAT IF validation statistic for 

structure ensembles of different proteins, with bars representing the mean ± standard 

deviation computed from 20 structures. Structure calculations without any statistical 

torsion angle potential (black), with the DELPHIC potential12 (gray), and with the new 

torsionDBPot potential (white) are included. Abbreviated protein names are used; for full 
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names see Table II. Each statistic is a score: the larger the better. Packing quality (panel 

C) refers to the 2nd generation packing quality.  

 

Figure 4. Fit to experimental data. Each barplot displays a figure of merit for the fit to a 

given experimental NMR observable of structure ensembles of different proteins, with 

bars representing the mean ± standard deviation computed from 20 structures (note that 

error bars associated with very small standard deviations may seem missing). Structure 

calculations without any statistical torsion angle potential (black), with the DELPHIC 

potential12 (gray), and with the new torsionDBPot potential (white) are included. 

Abbreviated protein names are used; for full names see Table II. Large torsion angle 

RMS deviations for ubiquitin (panel B, asterisc) stem from unrealistically narrow bounds 

in the publicly released restraints (PDB ID: 1D3Z). Each RDC R-factor (panel C) is an 

unweighted average over different alignment media and nuclei pairs (when applicable). 
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Table SI. Probability Density Expressions Extracted from the Torsion Angle Database 
 

Residue 
Type 

Residues in Database a Probability Density Function b Statistical 
Approximation c 

Energy Term 
Applied To: d 

Gly All glycines (93,113) 

€ 

p(φ,ψ)  None All glycines 
cis-Pro All cis-prolines (2,343) 

€ 

p(φ,ψ,χ 2 )  

€ 

χ 2 determines other 
ring torsion angles 

All cis-prolines 

trans-Pro All trans-prolines (46,686) 

€ 

p(φ,ψ,χ 2 )  

€ 

χ 2 determines other 
ring torsion angles 

All trans-
prolines 

preProAla All non-glycine, non-proline, 
pre-proline residues (39,093) 

€ 

p(φ,ψ)  None pre-proline 
alanines 

preProThr All non-glycine, non-proline, 
non-alanine, pre-proline 
residues (35,471) 

€ 

p(φ,ψ,χ1)  None pre-proline 
threonines 

preProVal All non-glycine, non-proline, 
non-alanine, pre-proline 
residues (35,471) 

€ 

p(φ,ψ,χ1)  None pre-proline 
valines 

preProSer All non-glycine, non-proline, 
non-alanine, pre-proline 
residues (35,471) 

€ 

p(φ,ψ,χ1)  None pre-proline 
serines 

preProCys All non-glycine, non-proline, 
non-alanine, pre-proline 
residues (35,471) 

€ 

p(φ,ψ,χ1)  None pre-proline 
cysteines 

All non-glycine, non-proline, 
non-alanine, pre-proline 
residues (35,471) 

€ 

p(φ,ψ,χ1)  

€ 

×  
 
 
 

preProAsp 

All aspartates (57,985) 

€ 

p(χ 2 )  
€ 

χ 2⊥φ,ψ,χ1  pre-proline 
aspartates 

All non-glycine, non-proline, 
non-alanine, pre-proline 
residues (35,471) 

€ 

p(φ,ψ,χ1)  

€ 

×  
 
 
 

preProAsn 

All asparagines (44,158) 

€ 

p(χ 2 )  
€ 

χ 2⊥φ,ψ,χ1  pre-proline 
asparagines 

All non-glycine, non-proline, 
non-alanine, pre-proline 
residues (35,471) 

€ 

p(φ,ψ,χ1)  

€ 

×  
 
 
 

preProIle 

All isoleucines (59,385) 

€ 

p(χ 2 )  
€ 

χ 2⊥φ,ψ,χ1  pre-proline 
isoleucines 

All non-glycine, non-proline, 
non-alanine, pre-proline 
residues (35,471) 

€ 

p(φ,ψ,χ1)  

€ 

×  
 
 
 

preProLeu 

All leucines (95,250) 

€ 

p(χ 2 )  
€ 

χ 2⊥φ,ψ,χ1  pre-proline 
leucines 

All non-glycine, non-proline, 
non-alanine, pre-proline 
residues (35,471) 

€ 

p(φ,ψ,χ1)  

€ 

×  
 
 
 

preProHis 

All histidines (24,061) 

€ 

p(χ 2 )  
€ 

χ 2⊥φ,ψ,χ1  pre-proline 
histidines 

 
 

Page 44 of 46

John Wiley & Sons

Protein Science



Table SI. (Continued.) 
 

Residue 
Type 

Residues in Database a Probability Density Function b Statistical 
Approximation c 

Energy Term 
Applied To: d 

All non-glycine, non-proline, 
non-alanine, pre-proline 
residues (35,471) 

€ 

p(φ,ψ,χ1)  

€ 

×  
 
 
 

preProTrp 

All tryptophans (15,671) 

€ 

p(χ 2 )  
€ 

χ 2⊥φ,ψ,χ1  pre-proline 
tryptophans 

All non-glycine, non-proline, 
non-alanine, pre-proline 
residues (35,471) 

€ 

p(φ,ψ,χ1)  

€ 

×  
 
 
 

preProTyr 

All tyrosines (38,484) 

€ 

p(χ 2 )  
€ 

χ 2⊥φ,ψ,χ1  pre-proline 
tyrosines 

All non-glycine, non-proline, 
non-alanine, pre-proline 
residues (35,471) 

€ 

p(φ,ψ,χ1)  

€ 

×  
 
 
 

preProPhe 

All phenylalanines (45,572) 

€ 

p(χ 2 )  
€ 

χ 2⊥φ,ψ,χ1  pre-proline 
phenylalanines 

All non-glycine, non-proline, 
non-alanine, pre-proline 
residues (35,471) 

€ 

p(φ,ψ,χ1)  

€ 

×  
 
 
 

preProMet 

All methionines (14,319) 

€ 

p(χ 2,χ 3 ) 
€ 

χ 2,χ 3⊥φ,ψ,χ1 pre-proline 
methionines 

All non-glycine, non-proline, 
non-alanine, pre-proline 
residues (35,471) 

€ 

p(φ,ψ,χ1)  

€ 

×  
 
 
 

preProGlu 

All glutamates (46,950) 

€ 

p(χ 2,χ 3 ) 
€ 

χ 2,χ 3⊥φ,ψ,χ1 pre-proline 
glutamates 

All non-glycine, non-proline, 
non-alanine, pre-proline 
residues (35,471) 

€ 

p(φ,ψ,χ1)  

€ 

×  
 
 
 

preProGln 

All glutamines (31,349) 

€ 

p(χ 2,χ 3 ) 
€ 

χ 2,χ 3⊥φ,ψ,χ1 pre-proline 
glutamines 

All non-glycine, non-proline, 
non-alanine, pre-proline 
residues (35,471) 

€ 

p(φ,ψ,χ1)  

€ 

×  
 
 
 

preProArg 

All arginines (38,701) 

€ 

p(χ 2,χ 3,χ 4 )  
€ 

χ 2,χ 3,χ 4⊥φ,ψ,χ1  pre-proline 
arginines 

All non-glycine, non-proline, 
non-alanine, pre-proline 
residues (35,471) 

€ 

p(φ,ψ,χ1)  

€ 

×  
 
 
 

preProLys 

All lysines (36,834) 

€ 

p(χ 2,χ 3,χ 4 )  
€ 

χ 2,χ 3,χ 4⊥φ,ψ,χ1  pre-proline 
lysines 
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Table SI. (Continued.) 
 

Residue 
Type 

Residues in Database a Probability Density Function b Statistical 
Approximation c 

Energy Term 
Applied To: d 

Ala All non-pre-proline alanines 
(98,680) 

€ 

p(φ,ψ)  None non-pre-proline 
alanines 

Thr All non-pre-proline 
threonines (58,953) 

€ 

p(φ,ψ,χ1)  None non-pre-proline 
threonines 

Val All non-pre-proline valines 
(75,992) 

€ 

p(φ,ψ,χ1)  None non-pre-proline 
valines 

Ser All non-pre-proline serines 
(58,156) 

€ 

p(φ,ψ,χ1)  None non-pre-proline 
serines 

Cys All non-pre-proline cysteines 
(9,577) 

€ 

p(φ,ψ,χ1)  None non-pre-proline 
cysteines 

Asp All non-pre-proline 
aspartates (54,955) 

€ 

p(φ,ψ,χ1)p(χ1,χ 2 )
p(χ1)

   

€ 

χ 2⊥φ,ψ given χ1   non-pre-proline 
aspartates 

Asn All non-pre-proline 
asparagines (41,623) 

€ 

p(φ,ψ,χ1)p(χ1,χ 2 )
p(χ1)

   

€ 

χ 2⊥φ,ψ given χ1   non-pre-proline 
asparagines 

Ile All non-pre-proline 
isoleucines (56,534) 

€ 

p(φ,ψ,χ1)p(χ1,χ 2 )
p(χ1)

   

€ 

χ 2⊥φ,ψ given χ1   non-pre-proline 
isoleucines 

Leu All non-pre-proline leucines 
(90,123) 

€ 

p(φ,ψ,χ1)p(χ1,χ 2 )
p(χ1)

   

€ 

χ 2⊥φ,ψ given χ1   non-pre-proline 
leucines 

His All non-pre-proline 
histidines (22,619) 

€ 

p(φ,ψ,χ1)p(χ1,χ 2 )
p(χ1)

   

€ 

χ 2⊥φ,ψ given χ1   non-pre-proline 
histidines 

Trp All non-pre-proline 
tryptophans (15,110) 

€ 

p(φ,ψ,χ1)p(χ1,χ 2 )
p(χ1)

   

€ 

χ 2⊥φ,ψ given χ1   non-pre-proline 
tryptophans 

Tyr All non-pre-proline tyrosines 
(36,671) 

€ 

p(φ,ψ,χ1)p(χ1,χ 2 )
p(χ1)

   

€ 

χ 2⊥φ,ψ given χ1   non-pre-proline 
tyrosines 

Phe All non-pre-proline 
phenylalanines (43,564) 

€ 

p(φ,ψ,χ1)p(χ1,χ 2 )
p(χ1)

   

€ 

χ 2⊥φ,ψ given χ1   non-pre-proline 
phenylalanines 

Met All non-pre-proline 
methionines (13,727) 

€ 

p(φ,ψ,χ1)p(χ1,χ 2,χ 3 )
p(χ1)  

  

€ 

χ 2⊥φ,ψ given χ1
   

€ 

χ 3⊥φ,ψ given χ1,χ 2  

non-pre-proline 
methionines 

Glu All non-pre-proline 
glutamates (45,332) 

€ 

p(φ,ψ,χ1)p(χ1,χ 2,χ 3 )
p(χ1)  

  

€ 

χ 2⊥φ,ψ given χ1
   

€ 

χ 3⊥φ,ψ given χ1,χ 2  

non-pre-proline 
glutamates 

Gln All non-pre-proline 
glutamines (30,031) 

€ 

p(φ,ψ,χ1)p(χ1,χ 2,χ 3 )
p(χ1)  

  

€ 

χ 2⊥φ,ψ given χ1
   

€ 

χ 3⊥φ,ψ given χ1,χ 2  

non-pre-proline 
glutamines 

Arg All non-pre-proline arginines 
(37,112) 

€ 

p(φ,ψ,χ1)p(χ1,χ 2,χ 3 )p(χ 2,χ 3,χ 4 )
p(χ1)p(χ 2,χ 3 )  

  

€ 

χ 2⊥φ,ψ given χ1
   

€ 

χ 3⊥φ,ψ given χ1,χ 2
   

€ 

χ 4⊥φ,ψ given χ 2 ,χ 3  

non-pre-proline 
arginines 

Lys All non-pre-proline lysines 
(35,281) 

€ 

p(φ,ψ,χ1)p(χ1,χ 2,χ 3 )p(χ 2,χ 3,χ 4 )
p(χ1)p(χ 2,χ 3 )  

  

€ 

χ 2⊥φ,ψ given χ1
   

€ 

χ 3⊥φ,ψ given χ1,χ 2
   

€ 

χ 4⊥φ,ψ given χ 2 ,χ 3  

non-pre-proline 
lysines 

 

a Residues in the torsion angle database used to estimate the probability density function 
(the total number of instances is indicated in parenthesis). 
b Expression used to represent the full joint probability density function. For simplicity, 
conditionals are omitted (for residue type Gly, p(φ, ψ) stands for p(φ, ψ|Gly), etc.). For 
certain prePro residue subtypes (e.g., preProAsp) the different probability density 
components arise from different residue populations in the database. 
c Approximation used to break down the full probability density function into 
components of lower dimensionality (

€ 

⊥ means “independent of”). 
d Residues to which the associated statistical potential is applied during structure 
calculations. 
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